翻訳と辞書 |
Local Tate duality : ウィキペディア英語版 | Local Tate duality In Galois cohomology, local Tate duality (or simply local duality) is a duality for Galois modules for the absolute Galois group of a non-archimedean local field. It is named after John Tate who first proved it. It shows that the dual of such a Galois module is the Tate twist of usual linear dual. This new dual is called the (local) Tate dual. Local duality combined with Tate's local Euler characteristic formula provide a versatile set of tools for computing the Galois cohomology of local fields. ==Statement== Let ''K'' be a non-archimedean local field, let ''Ks'' denote a separable closure of ''K'', and let ''GK'' = Gal(''Ks''/''K'') be the absolute Galois group of ''K''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Local Tate duality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|